Aliases: C42⋊1C18, C42⋊C9⋊1C2, C42⋊2C2⋊C9, (C4×C12).1C6, (C22×C6).2A4, C3.(C42⋊C6), C23.1(C3.A4), (C2×C6).7(C2×A4), (C3×C42⋊2C2).C3, C22.3(C2×C3.A4), SmallGroup(288,74)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C42 — C4×C12 — C42⋊C9 — C42⋊C18 |
C42 — C42⋊C18 |
Generators and relations for C42⋊C18
G = < a,b,c | a4=b4=c18=1, ab=ba, cac-1=b-1, cbc-1=a-1b >
Character table of C42⋊C18
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 3 | 4 | 1 | 1 | 6 | 6 | 12 | 3 | 3 | 4 | 4 | 16 | 16 | 16 | 16 | 16 | 16 | 6 | 6 | 6 | 6 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ98 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | linear of order 9 |
ρ8 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ92 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | linear of order 9 |
ρ9 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ94 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | -ζ97 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | -ζ92 | linear of order 18 |
ρ10 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ94 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | linear of order 9 |
ρ11 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ95 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | -ζ92 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | -ζ97 | linear of order 18 |
ρ12 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ9 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | -ζ94 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | -ζ95 | linear of order 18 |
ρ13 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ9 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | linear of order 9 |
ρ14 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ92 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | -ζ98 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | -ζ9 | linear of order 18 |
ρ15 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ98 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | -ζ95 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | -ζ94 | linear of order 18 |
ρ16 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ97 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | -ζ9 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | -ζ98 | linear of order 18 |
ρ17 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ95 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | linear of order 9 |
ρ18 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ97 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | linear of order 9 |
ρ19 | 3 | 3 | -3 | 3 | 3 | -1 | -1 | 1 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ20 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ21 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ22 | 3 | 3 | -3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×C3.A4 |
ρ23 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ24 | 3 | 3 | -3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×C3.A4 |
ρ25 | 6 | -2 | 0 | 6 | 6 | 2i | -2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊C6 |
ρ26 | 6 | -2 | 0 | 6 | 6 | -2i | 2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊C6 |
ρ27 | 6 | -2 | 0 | -3+3√-3 | -3-3√-3 | -2i | 2i | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ32 | 2ζ43ζ32 | 2ζ4ζ3 | 2ζ43ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -2 | 0 | -3-3√-3 | -3+3√-3 | 2i | -2i | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ3 | 2ζ4ζ3 | 2ζ43ζ32 | 2ζ4ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 6 | -2 | 0 | -3+3√-3 | -3-3√-3 | 2i | -2i | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ32 | 2ζ4ζ32 | 2ζ43ζ3 | 2ζ4ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | -2 | 0 | -3-3√-3 | -3+3√-3 | -2i | 2i | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ3 | 2ζ43ζ3 | 2ζ4ζ32 | 2ζ43ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 33 24 10)(2 61 25 42)(3 52)(4 13 27 36)(5 64 28 45)(6 56)(7 21 30 16)(8 67 31 48)(9 40)(11 70 34 51)(12 62)(14 55 19 54)(15 46)(17 58 22 39)(18 68)(20 65)(23 49)(26 71)(29 37)(32 59)(35 43)(38 47 57 66)(41 69 60 50)(44 53 63 72)
(1 41 24 60)(2 51)(3 35 26 12)(4 44 27 63)(5 55)(6 15 29 20)(7 47 30 66)(8 39)(9 23 32 18)(10 50 33 69)(11 61)(13 53 36 72)(14 45)(16 38 21 57)(17 67)(19 64)(22 48)(25 70)(28 54)(31 58)(34 42)(37 65 56 46)(40 49 59 68)(43 71 62 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,33,24,10)(2,61,25,42)(3,52)(4,13,27,36)(5,64,28,45)(6,56)(7,21,30,16)(8,67,31,48)(9,40)(11,70,34,51)(12,62)(14,55,19,54)(15,46)(17,58,22,39)(18,68)(20,65)(23,49)(26,71)(29,37)(32,59)(35,43)(38,47,57,66)(41,69,60,50)(44,53,63,72), (1,41,24,60)(2,51)(3,35,26,12)(4,44,27,63)(5,55)(6,15,29,20)(7,47,30,66)(8,39)(9,23,32,18)(10,50,33,69)(11,61)(13,53,36,72)(14,45)(16,38,21,57)(17,67)(19,64)(22,48)(25,70)(28,54)(31,58)(34,42)(37,65,56,46)(40,49,59,68)(43,71,62,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,33,24,10)(2,61,25,42)(3,52)(4,13,27,36)(5,64,28,45)(6,56)(7,21,30,16)(8,67,31,48)(9,40)(11,70,34,51)(12,62)(14,55,19,54)(15,46)(17,58,22,39)(18,68)(20,65)(23,49)(26,71)(29,37)(32,59)(35,43)(38,47,57,66)(41,69,60,50)(44,53,63,72), (1,41,24,60)(2,51)(3,35,26,12)(4,44,27,63)(5,55)(6,15,29,20)(7,47,30,66)(8,39)(9,23,32,18)(10,50,33,69)(11,61)(13,53,36,72)(14,45)(16,38,21,57)(17,67)(19,64)(22,48)(25,70)(28,54)(31,58)(34,42)(37,65,56,46)(40,49,59,68)(43,71,62,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,33,24,10),(2,61,25,42),(3,52),(4,13,27,36),(5,64,28,45),(6,56),(7,21,30,16),(8,67,31,48),(9,40),(11,70,34,51),(12,62),(14,55,19,54),(15,46),(17,58,22,39),(18,68),(20,65),(23,49),(26,71),(29,37),(32,59),(35,43),(38,47,57,66),(41,69,60,50),(44,53,63,72)], [(1,41,24,60),(2,51),(3,35,26,12),(4,44,27,63),(5,55),(6,15,29,20),(7,47,30,66),(8,39),(9,23,32,18),(10,50,33,69),(11,61),(13,53,36,72),(14,45),(16,38,21,57),(17,67),(19,64),(22,48),(25,70),(28,54),(31,58),(34,42),(37,65,56,46),(40,49,59,68),(43,71,62,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)]])
Matrix representation of C42⋊C18 ►in GL6(𝔽37)
1 | 35 | 0 | 0 | 0 | 0 |
1 | 36 | 0 | 0 | 0 | 0 |
9 | 11 | 6 | 0 | 0 | 0 |
9 | 11 | 0 | 6 | 0 | 0 |
12 | 27 | 0 | 0 | 0 | 6 |
35 | 27 | 0 | 0 | 31 | 0 |
31 | 0 | 0 | 0 | 0 | 0 |
0 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 31 | 0 | 0 |
29 | 0 | 6 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 36 | 0 |
1 | 0 | 0 | 0 | 0 | 22 |
0 | 0 | 0 | 0 | 26 | 11 |
8 | 10 | 0 | 0 | 0 | 27 |
8 | 0 | 0 | 0 | 0 | 27 |
23 | 0 | 0 | 10 | 0 | 36 |
23 | 0 | 10 | 0 | 0 | 36 |
G:=sub<GL(6,GF(37))| [1,1,9,9,12,35,35,36,11,11,27,27,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,31,0,0,0,0,6,0],[31,0,0,29,2,12,0,31,0,0,0,0,0,0,0,6,0,0,0,0,31,0,0,0,0,0,0,0,0,36,0,0,0,0,1,0],[1,0,8,8,23,23,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,10,0,0,26,0,0,0,0,22,11,27,27,36,36] >;
C42⋊C18 in GAP, Magma, Sage, TeX
C_4^2\rtimes C_{18}
% in TeX
G:=Group("C4^2:C18");
// GroupNames label
G:=SmallGroup(288,74);
// by ID
G=gap.SmallGroup(288,74);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,50,2523,514,360,6304,3476,102,3036,5305]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^18=1,a*b=b*a,c*a*c^-1=b^-1,c*b*c^-1=a^-1*b>;
// generators/relations
Export
Subgroup lattice of C42⋊C18 in TeX
Character table of C42⋊C18 in TeX